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Abstract— IP is certainly the most popular wide area network 
protocol while Ethernet is the most common Layer-2 network 
protocol, and it is currently being deployed beyond the tight 
borders of LANs. In order to accommodate the needs of MANs 
and WANs, several QoS mechanisms employed either at the IP 
layer or the MAC sublayer have been proposed.  These QoS 
mechanisms require identification of network flows and the 
classification of network packets according to certain packet 
header fields. In this paper, we propose a classification engine 
employed either at the MAC sublayer or the IP layer, which is 
the successor of a scheme already successfuly implemented which 
is only employed at the MAC sublayer. This new scheme uses an 
innovative hashing scheme combined with an efficient trie-based 
structure. By using such techniques, the extremely high speed 
decisions –at a rate of more than 100Gb/sec- are supported, while 
the memory needs of the proposed engine are significantly lower 
compared to those of the similar schemes currently used. This 
engine has been implemented in hardware utilizing less than 
0.2mm² in a state of the art CMOS technology.  As a result the 
proposed scheme is a very promising candidate for both the next-
generation IP classification engines(probably incorporated within 
the high-end network processors) as well as for the Ethernet 
equipments that need to support classification at multi-Gigabit 
per second network speeds, while also employing the minimum 
amount of memory. 

I. INTRODUCTION  
Ethernet is, by far, the most common Layer-2 network 

protocol, and it is currently exploited in MANs and WANs. 
Therefore, there are several schemes proposed for the QoS 
support at this layer, such as the VLAN scheme employed in 
the MAC sublayer [1], or certain QoS protocols for wireless 
environments [2].  At the same time an Internet router which 
provides more advanced services than packet forwarding, must 
today support fine grained QoS. Those QoS mechanisms 
require identification of network flows and classification of 
packets according to their MAC or IP addresses, VLAN IDs 
and port number fields. Moreover, in order to be able to 
support fine-grained QoS they incorporate tens of thousands of 
independent network flows identified by those fields. In the 
case of Ethernet classification the length of the MAC 
addresses, namely 48-bits, is what makes the classification task 
difficult since exact matches in such a wide value is not a 
trivial task. Since the main advantage of the Ethernet networks, 

and the associated equipments, is their low cost, the 
classification solutions that would be used within the specified 
frameworks should be as cost efficient as possible. In the case 
of IP classification, longest prefix match of the 32-bit IP 
address is needed which is certainly a complicated task. 

In this paper, we propose a classification engine utilized 
both at the MAC sublayer and at the IP layer which uses a new 
hashing scheme and internal replacement of MAC Vendor IDs 
at the Ethernet layer, and the same hashing scheme together 
with an innovative trie-based engine for the IP classificaton; 
the Double Layer Classification Engine (DLCE) can reach 
classification decisions at extremely high speeds while its main 
advantage is that it utilizes less than two thirds of the memory 
needed by the existing solutions. The efficiency of the 
proposed engine comes from the fact that the hashing and the 
replacement schemes, together with the trie-based engine used, 
take advantage of the individual characteristics of the MAC 
and IP addresses, respectively. This engine is the successor of 
the HBCE hardware module, presented in [3]  which is only 
capable of supporting Layer-2 network packets. DLCE has also 
been implemented in hardware and while its implementation 
cost is minimal, it supports network rates higher than 100 
Gb/sec while incorporating 128K independent rules.  

II. RELATED WORK 
L2 classification requires the fields mentioned in the last 

section to be examined and the appropriate action to be 
performed. Therefore, the network equipments need to store 
some information and consult them for their decisions. The 
information regarding the MAC or IP addresses, the VLANs 
and the Ports are stored in internal data structures and for each 
packet a search is conducted using the corresponding packet 
header fields. 

The nature of L2 classification requires exact matches and 
many implementations use CAMs that provide single access 
matching [4]. CAM solutions, although simple, they are 
expensive and consume large amounts of power. Trie based 
solutions [5] have poor performance since they cannot handle 
efficiently long matching strings such as the MAC address. 
Moreover, trie based solutions, at the MAC layer may require 
several memory accesses and massive storage for the 
associated pointers.  
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Another popular solution is hashing of the MAC address 
bits and storing the data in SRAM based lookup tables. The 48-
bits are hashed using a specific hashing function and an index 
for the lookup table is generated. Many solutions use the CRC 
polynomials for hashing since they have been proved very 
efficient [6] however others, mainly due to cost reasons, use 
direct mapping by the least significant bits of the MAC address 
[7]. 

For the IP classification tasks the numerous longest prefix 
matches (LPM) algorithms proposed for IP routing are in 
general employed. One class of those schemes uses CAMs 
such as [4], while several others make extended use of tries and 
traverse tree data structures to find the matching prefix, as 
presented in [5]. Unibit tries check one bit at a time and follow 
the nodes until no matching bit is found. Schemes of this type 
have a worst case lookup of 32 memory accesses for IPv4 
(since the IPv4 address fields are 32 bits long) and spend also 
lot of memory to save the pointers for the next nodes. On the 
other hand, multi-bit tries traverse several bits at a time and this 
provides faster searches. For example if we check 4 bits at a 
time (4-bit strides) then the worst case is 8 memory accesses. 
In these tries, problems arise when the prefixes are not 
multiples of the stride length. Solution to this problem is prefix 
expansion as described in [8]. CPE generates many prefixes 
and leads to great memory waste (especially when the stride 
length grows) and to non deterministic update times. 

Other, LPM schemes from literature like Lulea [9] tried to 
solve the memory waste of CPE by using compressed bitmaps 
to represent strides. They use strides of 16,8 and 8-bits 
consecutively to represent the 32-bit IPv4 address space. The 
first 16bits are used as an index to a 64K table and the next 8-
bit strides are represented by their own bitmap algorithm where 
each stride requires 32 bytes nodes even if only 1 prefix exists 
in the 256 space. A lookup is performed at worst case with 9 
memory accesses but incremental updates to this scheme are 
inherently slow. Lulea is the most storage efficient scheme 
presented in literature so far. 

III. DOUBLE LAYER CLASSIFICATION ENGINE 
Our solution for both Layer-2 and Layer-3 classification is 

based on hashing, but we propose a scheme that exactly 
matches the special characteristics of the MAC and IP 
addresses. Moreover, in the MAC sublayer it employs the 
technique of internal MAC Vendor replacement, while in the 
IP layer it uses a sophisticated trie-based algorithm. The DLCE 
is designed to support tens-of-thousands of IP and MAC-
address rules. Every rule in the ruleset is associated to a 
number called FlowID (which can, for example, be a pointer to 
another memory which holds the associated information for 
this rule or simply a number identifying the output port of the 
device).  We decided to use 15-bit FlowIDs, translating to 32K 
unique and independent network flows, which have been 
proved to be enough for most network equipments.   

A. MAC Address Hashing 
We developed a hashing function to map the IP and MAC-

address rules into a table that will hold the FlowID of the 
associated rule. Those rules are stored in a 64K table called 

MAC_TBL and the indexes to it are generated by our hashing 
function applied to the address bits. The collisions due to 
hashing are handled by pointers to variable size blocks. 
Handling variable size blocks requires a dynamic memory 
management scheme which is described in [3]. The number of 
entries in each variable size block is defined by the number of 
rules that collide within a specific entry of the EXACT_TBL. 

In the most challenging task of the 48-bit MAC addresses 
our hashing scheme applies an XOR function and the 16-bit 
EXACT_TBL address is produced as follows: 

EXACT_TBLindex =  
{MAC[47:40] xor MAC[31:24] xor MAC[15:8], 
 MAC[39:32] xor MAC[23:16] xor MAC[7:0]} 

To identify a certain MAC-address rule within a particular 
table entry we also need to save some additional information so 
as to be able to distinguish those that collide. Fortunately, we 
don’t need to save all 48-bits and we take advantage of the fact 
that the XOR function can be “inversed”. Therefore a certain 
MAC-value associated with address A of MAC_TBL can be 
reproduced by the 16-bits of A and the last 32-bits (Hval) of the 
MAC address as follows: 

MAC[47:40] =  
  A[15:8] xor Hval[31:24] xor Hval[15:8] 
MAC[39:32] =  
  A[7:0] xor Hval[23:16] xor Hval[7:0] 
MAC[31:0]  = Hval(31:0) 

So by using Hval we can uniquely identify each MAC-
address rule. If we use CRC-16 to produce the 16-bit indexes, 
like the popular schemes described in the related work section, 
then we would have to store the complete 48-bits of the MAC 
address since there is no inverse CRC function. Moreover, 
CRC polynomials don’t have one-to-one correspondence 
between input and generated values. The speed and storage 
performance of our hashing function is discussed in section IV. 

B. MAC Vendor Replacement 
The official IEEE OUI [10] has published all the assigned 

24-bit MAC vendor IDs and the associated company names. 
Based on them we have observed that the 24-bit vendor address 
space of the MAC addresses is not fully occupied. In fact, 
fewer than 8000 vendors are active instead of the 224 possible. 
Therefore we can replace the 24-bit vendor ID with a 13-bit 
internally assigned vendor ID. The last 24-bits of the MAC 
address that uniquely identify a device, of a certain vendor, 
remain unchanged. This replacement reduces the storage 
requirements for each MAC-address rule, at the cost obviously 
of the replacement operation. Consequently, every incoming 
MAC-address rule need to be translated before the actual 
processing begins.  

We can now consider that each MAC-address rule handled 
by our system is 37-bits long. Naturally, this replacement 
means that we keep a small table with 8192 entries called 
VID_RPL that matches the existing 24-bit Vendor ID values 
with the internally assigned 13-bit Vendor ID values. This table 
can be easily constructed since all Vendor IDs are sequentially 
assigned by IEEE and a few ‘holes’ that exist in the address 
space can be handled by a 24-to-13 decoder. Although this 
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table is constant and thus can be kept in a ROM, we can also 
use a method that learns the connected MAC addresses and 
assigns incrementally an internal Vendor ID.  

After this replacement we define a new hashing function on 
the 37-bits of the MAC address. Now, the 16-bit indexes in 
MAC_TBL are generated as follows: 

MAC_TBLindex = { MAC[31:24] xor MAC[15:8] , 
       MAC[23:16] xor MAC[7:0] } 

Notice that we don’t use the 6 MSB of the replaced Vendor 
ID in order to have a byte balanced hashing function. The new 
Hval is now 21-bits and is defined as follows: 

Hval = { MAC[36:24] ,  MAC[7:0] } 
 

Now, a MAC-address associated with address A of 
MAC_TBL can be reproduced by the 16-bits of the address and 
Hval as follows: 

MAC[36:24]  =  Hval[20:8] 
MAC[23:16]  =  A[7:0] xor Hval[7:0] 
MAC[15:8]   =  A[15:8] xor Hval[15:8] 
MAC[7:0]    =  Hval(7:0) 

As described in [3], the FlowID, the Hval and the 
information containing the number of collisions and the 
address of the first of the chain of the collided nodes are all 
fitted in a 36-bit standard memory word. 

C. IP layer classification  
In order to be able to develop an efficient classification 

scheme, we collected several routing tables from backbone 
routers of the Internet that are available in IPMA [11] and 
analyze them, in terms of the length of the various prefixes. 
Note that those routing prefixes are also used for the 
classification of the network flows according to the different 
QoS criteria.  The distribution of the various lengths is shown 
in Fig. 1; from this graph it is clear that 99% of the prefixes 
have lengths in the interval between 16 and 24 and more than 
half of the total prefixes have length equal to 24. This 
distribution has been found to be constant over time and stable 
between routing tables of various sizes, hence we have used as 
a basis for our algorithm. In particular the proposed scheme has 
the following properties: 

1. Easily implementable in hardware 
2. Moderate algorithmic complexity  
3. Fast lookups times for common case 
4. Lower storage requirements than the existing solutions  
5. Deterministic and bounded incremental update times, in 

comparison with the unbounded such times of the vast 
majority of the proposed schemes 

In order to cope with the above requirements we ended up 
with the DLCE which: 
• Uses strides and multi-bit trie nodes in order to traverse 

several bits at a time and produce fast lookups.  
• Employs data structures with multi-bit nodes optimized to 

perform efficiently in the prefix interval 16 to 24. 
• Its nodes are represented with bitmaps that can be 

processed fast in hardware and require small storage. 

• The updates in the nodes are executed by well defined 
routines and in deterministic time. 

 

 
Figure 1.  Routing Table Distribution 

1) DLCE Trie Nodes 
The key data structure of DLCE is a trie node that can hold 

prefixes of lengths from 0 to 7 bits. This trie has 8 levels and 
therefore the total number of possible prefixes that can be 
accommodated are 255. We can use a bitmap to represent all 
the possible prefixes and this needs at least 255 bits as 
presented in [9]. According to this representation every prefix 
is correlated with a specific bit position inside the bitmap. If a 
specific bit is set then the corresponding prefix exists.   

Consider a trie that can accommodate prefixes with lengths 
from 0 to 3 bits as shown in Fig. 2. The prefix with length 0, 
namely *,  is assigned with number 0, the prefix with length 1 
and the prefix bit set to 0, namely 0*,  is assigned with number 
1,  the prefix with length 1 and the prefix bit set to 1, namely 
1*, is assigned with number 2 and so on as Fig. 2 presents. 
Moreover, the level of the trie where a specific prefix is located 
is equal to its length. 

 
Figure 2.  Prefix trie that supports prefixes up to length 3 

We can derive a formula that correlates the length and the 
decimal value of a prefix with a number. Prefix with length 0 is 
assigned number 0 and all the other prefixes are numbered by 
the following formula: 

PrefixNO = PrefixValue + 2PrefixLength – 1 

The assigned prefix number can be used to indicate a 
specific bit position inside the bitmap. Since the bitmap that 
can accommodate all prefix lengths from 0 to 7 needs 255 bits 
even for a single prefix in this range, the trie node needs 32 
bytes. We can prevent this memory waste and partition this trie 
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in 17 subtries where each subtrie can support prefixes with 
lengths 0 to 3 as shown in Fig. 3. We store the prefixes that 
have length 0 to 3 in the subtrie numbered 0 and the prefixes of 
higher length, namely 4 to 7, to the corresponding subtrie. The 
subtrie for the prefixes that have length 4 to 7 is defined by the 
4 MSB of the prefix. The prefixes that have their 4 MSB equal 
to 0000 are stored in the subtrie numbered 1, the prefixes that 
have their 4MSB equal to 0001 are stored in the subtrie 
numbered 2 and so on as Fig. 3 presents. 

 
Figure 3.  Trie partitions 

We can easily derive a formula that correlates the length 
and the MSB of a prefix with a subtrie number. Prefixes with 
length 0 to 3 are stored in the subtrie 0 and for the prefixes of 
lengths from 4 to 7 we use the following formula to find the 
subtrie number: 

SubtrieNO = PrefixValue[0:3] + 1 

To store efficiently the information about the subtries, in 
the DLCE we define a certain bitmap call TrieBmp. In 
TrieBmp we correlate each bit with a specific subtrie according 
to the SubtrieNO formula. When a bit inside TrieBmp is set 
then the corresponding subtrie has a least 1 prefix active. For 
every active subtrie we need the information about the active 
prefixes belonging to it, therefore we define another bitmap 
called PrefixBmp. In PrefixBmp we correlate each bit with a 
specific prefix according to the PrefixNO formula. When a bit 
inside PrefixBmp is set then the corresponding prefix is 
included in the overall data structure (i.e. the prefix is 
“active”). 

The partitioning of 8-bit tries into smaller 4-bit subtries 
gives the flexibility to save only the active prefix bitmaps and 
not all of them. The trie bitmap needs 17 bits and each prefix 
bitmap needs 15 bits. This partitioning can be efficiently 
implemented by the dynamic memory management scheme of 
the MAC classification engine presented in detail in [3], 
because the variable number of prefix bitmaps requires pointers 
to variable size blocks. 

The associated information for each prefix is considered an 
N-bit quantity (the data associated with each rule), say 16-bits, 
and should be stored along with the prefix bitmap. Since more 
than one prefixes could be active we also need dynamic 
pointers to variable size blocks. So along with the prefix 
bitmap we save a pointer to the associated prefix data. 

To locate the subtrie of a specific prefix in the trie bitmap 
we use the subtrie formula below, where Tindex indicates the bit 
position of the actual subtrie number. 

• If the prefix has length 0-3 then : 
Tindex = 0 

• If the prefix has length 4-7 then : 
Tindex = prefix[0:3] + 1 

To locate a specific prefix in the prefix bitmap we present 
the formula shown below, where Pindex indicates the bit position 
of the actual prefix in a specific subtrie. 

• If Tindex = 0 
• If prefix length is equal to 0 then : 

Pindex = 0 
• If prefix length is equal to 1 then : 

Pindex = prefix[0] + 1 
• If prefix length is equal to 2 then : 

Pindex = prefix[0:1] + 3 
• If prefix length is equal to 3 then : 

Pindex = prefix[0:2] + 7 
• If Tindex != 0 

• If prefix length is equal to 0 then : 
Pindex = 0 

• If prefix length is equal to 1 then : 
Pindex = prefix[4] + 1 

• If prefix length is equal to 2 then : 
Pindex = prefix[4:5] + 3 

• If prefix length is equal to 3 then : 
Pindex = prefix[4:6] + 7 

To illustrate the data structures used by DLCE we introduce 
an example with the prefixes shown in Table I. The two 
leftmost columns have the actual prefixes and the associated 
information and the two rightmost columns show the internally 
represented subtrie and prefix number pairs. As calculated, a 
general view of the data structure needed to store the prefixes 
of the example is shown in Fig. 4. 

TABLE I.  PREFIX  EXAMPLE 

Prefix  
[0:6] 

Associated  
Info 

Subtrie  
Number 

Prefix 
Number 

00001* 23 1 2 
0000101* 47 1 12 
0000110* 7 1 13 
01* 15 0 5 
100* 121 0 11 
1001* 36 10 0 
1100* 51 13 0 
110011* 3 13 6 

In order to be able to efficiently search the blocks that are 
generated by our dynamic memory management scheme 
described in detail in [3] we have to have the prefix bitmaps 
and the associated prefix information sorted inside the blocks. 
The prefix bitmap for the first active subtrie should be placed 
first in the variable size block, the second in the second 
position etc. Moreover this indicates that we should know the 
number of set bits in the bitmap, fortunately this is a trivial 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

214



operation for hardware to perform. The requirement for 
dynamic memory management generates an additional 
complexity in insertions or updates since the variable size 
blocks need to be resized appropriately and put sorted. This 
operation can be handled easily since resizing and sorting is 
limited to 17 nodes. 

 
Figure 4.  Trie data structure example 

For a given 7-bit value, DLCE should first find the 
candidate subtries that could match a certain prefix and then 
the candidate prefixes, inside the subtrie, that could also match. 
Tracking the longest subtrie is the solution. The candidate 
subtries are always two: 

 T1index= 0 and 
 One of the subtries 1-16 depending on the 

value T2index = value[0:3] + 1. 

Inside the two subtries the candidate prefixes are four: 

 for T1index : 
 P1index = 0 
 P2index = value[0] + 1 
 P3index = value[0:1] + 3 
 P4index = value[0:2] + 7 

 for T2index : 
 P1index = 0 
 P2index = value[4] + 1 
 P3index = value[4:5] + 3 
 P4index = value[4:6] + 7 

We check the bit positions in TrieBmp for the two subtries 
and if both exist we give priority to the second subtrie which 
produces longer prefixes. Inside a matching subtrie we check 
all the bit positions in PrefixBmp for the 4 prefixes by giving 
priority to the fourth prefix which is the longest. The associated 
information for a matched prefix is retrieved by the node 
indicated by the pointer stored at the node of the matched 
prefix. 

The DLCE scheme uses the trie nodes for all the distinct 7-
bit prefix lengths inside the 32-bit address space. In particular, 
it supports trie nodes for the following prefix intervals: (a) 0-7, 
(b) 8-15, (c) 16-23, (d) 24-31 and (e) 32. To hold the root 
nodes for the prefixes in each distinct interval, DLCE uses 
several tables as shown in Fig. 5. For the interval 0-7 we have a 
single entry for root called TBL0. For interval 8-15 we have 28 

possible roots, therefore we use a 256-entry table called TBL8 
and the indexing is done with the first 8-bits of the prefix. For 
interval 16-23 we use a 216=65536 table called TBL16 and uses 
the first 16-bits of the prefix as index. For interval 24-31 we 
don’t use 224 entries because it would lead to great storage 
waste since no routing table could have 16777216 prefixes in 
this interval. Instead we use 216 entries in table TBL24 and 
indexing is done by hashing the first 24-bits of the value. For 
the 32 bit prefixes we use only 212 entries in table TBL32, since 
most routing tables have few entries in this interval, and 
addressing is done by hashing.  

 
Figure 5.  DLCE Tables 

Indexes in TBL24 and TBL32 are generated by the exact 
same function as in the case of MAC Layer classification by 
using the corresponding bits, while the collisions are also 
handled by the same scheme handling the collisions in Layer-2 
and described in section III.A.   

Note that all distinct intervals are independent and this 
gives us the flexibility to start searching for a prefix from the 
middle of the address space. Searching sequentially would 
require to lookup all 5 tables but we can use a binary search 
type of access and limit the lookups to 3 or less. Furthermore, 
we can implement parallel searches in hardware if each table is 
stored in a separate memory. 

   The DLCE searches the tables in specific sequence in 
order to minimize the number of accesses. Since 99% of the 
prefixes exist in the intervals 16-23 and 24-31, it is more likely 
to find the longest match there by examining the associated 
tables. At first we look in TBL16 and if a prefix match occurs 
then we can search in TBL24 and TBL32 to find a matching 
prefix. If lookups in TBL16 or TBL24 or TBL32 cannot find a 
match then we proceed to search TBL8 and if there is not any 
match again we finally search in TBL0. If after TBL32 a match 
was produced then our lookup process does not proceed to the 
next tables. The sequence of lookups is the following: 

TBL16 → TBL24 → TBL32 → TBL8 → TBL0 

IV. PERFORMANCE AND HARDWARE COST 
In this section we calculate and analyze the storage needs of 

DLCE, while we also present the performance achieved by our 
hardware implementation, together with its complexity. In the 
case of Layer-2 classification, as it is clearly demonstrated in 
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[3], the memory requirenments are significantly lower than 
those of the existing solutions (mainly the ones based on the 
CRC function), while the proposed scheme is also simpler and 
less expensive to  implement in hardware than the 
corresponding CRC one.  

For the IP classification, we demonstrate in Table II both 
the memory needed for the static tables, as well as the memory 
requirements of the scheme when the entire real-world prefix 
tables are stored in its data structures. 

TABLE II.  MEMORY REQUIREMENTS FOR IP CLASSIFICATION 

Prefix Table 
(Total  

Prefixes) 

Static 
Tables 

 

Collision 
Nodes 

 

Trie 
Nodes 

 

Total 

AADS   
(40K) 595 KB 24 KB 236 KB 855 KB 

MAE-EAST 
(60K) 595 KB 59 KB 357 KB 1011 KB 

PAIX  
(90K) 595 KB 128 KB 538 KB 1264 KB 

Those results clearly demonstrate that the static tables 
consume nearly 50% percent of the total storage. The collision 
nodes required are relatively small and require few Kbytes but 
the trie nodes possess a respectable part of the overall storage. 

The whole design is fully pipelined and uses four parallel 
memories/banks of memories, and thus the lookup performance 
of DLCE is based on the pipeline stalls which directly depend 
on the total number of memory accesses required to find a 
match. In the case of both Layer-2 and IP classification the 
performance of DLCE depends on the collisions on the main 
static tables, since when collisions occur we have to lookup 
sequentially all the colliding rules, triggering stalls in the 
pipeline. Moreover, in the case of the IP classification the 
performance also depends on the number of steps required to 
find the longest prefix match.   

To calculate the network performance we have used two 
different memory modules, 200MHz and 400MHz 
synchronous SRAMs. Since classification is performed for 
every incoming network packet, we calculate the throughput of 
our system based on the most conservative (worst-case) 
approach, by assuming that DLCE handles only minimum 
sized Ethernet (64 bytes) and IP (40-bytes) packets, while in 
the average case average packet sizes are considered. The 
summary of the supported link speeds is presented in Table III 
where the average throughput is based on the average pipeline 
stalls and the worst-case on the worst case stalls. This worst 
case is triggered when the lookups that should be performed, 
always encounter the maximum number of collisions and 
distinct number of steps in the case of IP classification. 

This scheme has also been synthesized and placed and 
routed in a 0.13µm CMOS technology, and it covers only 
0.18mm² of silicon area, while been clocked at 300MHz.  

In general, this new proposed system has all the advantages 
of HBCE, while it also supports classification decisions at 
Layer-3, at a minimal cost of an additional 0.8mm² of silicon, 
since 90% of the HBCE sub-module is also used by the IP 
classification engine.  

As those results clearly demonstrate the proposed scheme 
can be a very valuable component/submodule not only for the 
Layer-2 network equipments, but, more importantly, for 
today’s multi-layer network processing units that need to 
support QoS for several thousands network flows at the 
network rate of 100Gb/sec.  

TABLE III.  DLCE NETWORK PERFORMANCE 

SRAM 200MHz SRAM 400MHz Active 
MAC 

Addresses 
Average 
(Gbps) 

Worst Case 
(Gbps) 

Average 
(Gbps) 

Worst Case 
(Gbps) 

32K 68.7 17.1 137.5 34.2 
48K 59.2 14.6 118.4 29.2 
64K 51.7 12.8 103.5 25.6 

IP-layer 52.1 16.2 104.6 32.3 
 

When comparing this scheme with the existing solutions,, 
in terms of Layer-2 classification, it has significnatly lower  
memory requirements than the existing solutions, while 
supporting, at least, the same decision rate. Moreover, when 
compared to the existing classification schemes, eventhough it 
needs slightly more memory than one of them, it is one of the 
very few that supports updates in bounded, and limited time, 
while it matches the performance of them in terms of the 
supporting network rates.  

V. CONCLUSIONS  
This paper presents a novel classification engine that 

handles both Ethernet and IP network streams. The combined 
scheme called Double Layer Classification Engine (DLCE) 
handles up to tens of thousands distinct classification rules 
while supporting network rates even more than 100Gb/sec. The 
systems is the successor of the HBCE engine which could 
support only Ethernet packets. Its hardware implementation 
covers 0.18mm² of silicon area, while it is clocked at 300MHz. 
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